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Abstract. We develop a regularization of the quantum microcanonical ensemble, called
a Gaussian ensemble, which can be used for derivation of the canonical ensemble from
microcanonical principles. The derivation differs from the usual methods by giving an explanation
for the, at the first sight unreasonable, effectiveness of the canonical ensemble when applied
to certain small, isolated, systems. This method also allows a direct identification between the
parameters of the microcanonical and the canonical ensemble and it yields simple indicators and
rigorous bounds for the effectiveness of the approximation. Finally, we derive an asymptotic
expansion of the microcanonical corrections to the canonical ensemble for those systems, which are
near, but not quite, at the thermodynamical limit and show how and why the canonical ensemble can
be applied also for systems with an exponentially increasing density of states. The aim throughout
the paper is to keep mathematical rigour intact while attempting to produce results which are both
physically and practically interesting.

1. Introduction

The microcanonical ensemble is considered to be the fundamental ensemble of statistical
physics. For example, the use of the canonical Gibbs ensemble is usually justified by showing
that its expectation values coincide with the microcanonical ones in the thermodynamical
limit, when the size of the system approaches infinity. However, since an application of the
microcanonical ensemble requires detailed knowledge about the energy levels of the system,
it is seldom possible to use it in practice. The canonical ensemble, on the other hand, has a
well behaving path-integral expression easily extended to gauge field theories—therefore, it
has become the standard ensemble of quantum statistics.

Nevertheless, there are situations where the easiest, canonical, alternative does not work.
For instance, direct applications of the grand canonical ensemble have not been able to
reproduce all the results of relativistic ion collision experiments [1]. There are two possible
explanations for this shortcoming of the canonical ensemble: either the particle gas created in
the collision does not reach thermal equilibrium before exploding into the final-state hadrons,
or the system is too small to be handled by canonical methods. In fact, recent calculations [2]
using a modified grand canonical ensemble have succeeded in describing most of the particle
abundances in these experiments, but only at the cost of including finite-volume corrections to
the usual ensemble. This suggests that at least the final-state hadron gas will thermalize, but it
also shows that finite-volume effects are prominent in these systems.

† E-mail address:jani.lukkarinen@helsinki.fi
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These results point to the fact that the microcanonical ensemble—which is optimal
for describing isolated ergodic systems with small quantum numbers—should be used for
obtaining quantitative information about the properties of the quark–gluon plasma possibly
created in relativistic hadron collisions. There are already proposals of how this can be
accomplished in the continuum path-integral formulation of field theories [3], but since the
argumentation in this kind of formalism cannot be made completely mathematically rigorous,
a further study of the details of the quantum microcanonical ensemble was felt to be necessary.

When trying to perform rigorous quantum microcanonical computations, one immediately
encounters two practical difficulties associated with the discrete spectrum of an isolated
quantum system: since the spectrum is discrete, the possible values of the spectrum have
to be known in advance before any computations can be done; on the other hand, the position
of the high-energy spectral levels depends on small fluctuations of the interaction potential.
Consider, for example, the harmonic oscillator, for which the energy levels areEn = ω(n+ 1

2):
for n = 100, 1% change in the oscillator frequencyω will change the position of the levelE100

by a whole energy unit! Therefore, the spectral levels by themselves are not very practical
parameters; however, thedensityof the spectral levels is robust in fluctuations of the potential
and thus a smoothed energy spectrum would offer a more stable alternative.

This paper attempts to fill the gap between the canonical and the microcanonical ensemble
in quantum mechanics. The main ingredient in this is the introduction of the Gaussian
ensemble, which is essentially just a regularization of the discrete spectrum of a closed quantum
system. The Gaussian ensemble will be defined in section 2, where we will also show how
all microcanonical results can be obtained from the Gaussian ensemble in the limit where
the regularization is removed. In the following sections we will then show that in a certain
range of the regularization parameter the canonical ensemble is a good approximation of the
Gaussian ensemble and we will propose definite ways of estimating the difference between the
two methods. These results are then employed in the derivation of an asymptotic expansion of
microcanonical corrections to the canonical ensemble, which will be most useful for systems
near, but not quite at, the thermodynamical limit. Finally, we will consider some implications of
the present results to the thermodynamics of systems with an exponentially increasing density
of states, for which the canonical ensemble is in principle not well defined.

We will not repeat standard results or definitions of the statistics of quantum systems in
the thermodynamical limit here. The physical argumentation leading to the density operator
formulation is explained in most textbooks on the subject, volume five of the classical series
by Landau and Lifshitz [4] being a good example. More elaborate and recent analysis of the
subject can be found from volume one of the series by Balian [5], while a mathematically
rigorous approach is developed in volume four of ‘A Course in Mathematical Physics’ by
Thirring [6].

2. Gaussian ensemble† as a regularization of the microcanonical ensemble

Consider the operator defined by

ρ̂ε(E) = 1√
2πε2

exp

[
− 1

2

(
Ĥ − E
ε

)2]
(1)

whereĤ is the Hamiltonian andE and ε 6= 0 are two real parameters. SincêH is self-
adjoint, ρ̂ε(E) is bounded, self-adjoint and positive. For this operator to define a sensible

† On physical grounds, the idea of using a Gaussian energy distribution to define a statistical ensemble seems natural.
Such a physical reasoning was adopted, for instance, in [7] to introduce a Gaussian ensemble for studying first-order
phase transitions in certain lattice gauge theories.
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statistical ensemble via the trace formulae, it is also necessary to require that the spectrum of
the Hamiltonian is discrete and increases sufficiently fast at infinity so that Trρ̂ε(E) <∞. If
this is true, we will define theGaussian expectation valuesof an observablêA by the formula

〈Â〉gauss
E,ε ≡

Tr(Âρ̂ε(E))

Tr ρ̂ε(E)
. (2)

At this point, it will be useful to define some terminology to be used later. If the
Hamiltonian of the system satisfies Trρ̂ε(E) < ∞ for all E ∈ R andε > 0, we will call
the systemGaussianly boundedand define the above trace as the Gaussian partition function
Z

gauss
E,ε

. Similarly, if Tr e−βĤ < ∞ for all β > 0, we will say that the system iscanonically
boundedand the trace will give the canonical partition functionZcan

β . The termsGaussian
andcanonical observable,respectively, are then used for those normal or bounded operators
(i.e. observables)̂A for which 〈|Â|〉gauss

E,ε
<∞ or 〈|Â|〉can

β <∞ for all the above values of the

parameters—here|Â| refers to the positive square root ofÂ†Â. Analogously, systems with
a discrete energy spectrum with finite multiplicities are called microcanonically bounded and
all normal operators having a domain which contains the domain of the Hamiltonian as well
as all bounded operators are microcanonical observables. In this last case, the microcanonical
partition functionZmicro

E is defined by the number of eigenstates with energyE and the
microcanonical expectation values are the averages over these eigenstates.

Clearly, every canonically bounded system is Gaussianly bounded and every canonical
observable is a Gaussian observable and the same relations also hold between the Gaussian
and the microcanonical ensemble. The term bounded used here also has a direct physical
interpretation in the canonical case: by the Golden–Thompson–Symanzik inequality [8], which

applies forn-dimensional systems with Hamiltonians of the form̂H = 1
2
ˆ̂p2

+V ( ˆ̂x), a system is
canonically bounded if the potential increases fast enough at infinity so that

∫
dnx̂e−βV (x̂) <∞

for all β > 0.
The formal relation limε→0 ρ̂ε(E) = δ(Ĥ − E) is one obvious motivation for using this

ensemble to approximate the microcanonical one. However, it can also be argued that the
Gaussian ensemble is even better suited for describing typical experimental situations than the
microcanonical ensemble: if a quantum system was initially prepared into, or was measured
to have, an energyE and the system is almost, but not completely, isolated having interactions
with the environment that lead to energy fluctuations of the order ofε, then the Gaussian
ensemble using these parameters is the most natural way to predict the behaviour of a statistical
average over many independent measurements of an observable. Of course, for this physical
interpretation to be valid, the interactions with the environment need to be balanced in such a
way as not to lead to a net flow of energy from one direction to the other—this is the essence
of the requirement of ‘thermalization’ of the system in the context of the Gaussian ensemble.

Mathematically, the Gaussian ensemble is a regularization of the discrete energy spectrum
by a convolution with the normal distribution. As was explained in the introduction, this is
beneficial since it offers a way of removing the effect of the instability of the high-energy
spectral levels. Also, its use does not require any prior knowledge about the spectrum as it is
well defined for all values ofE. Most important, however, is the way the Gaussian ensemble
offers a natural and mathematically rigorous approximation of the microcanonical ensemble:

(i) lim ε→0

√
2πε2Z

gauss
E,ε = Zmicro

E for all realE;

(ii) lim ε→0Z
gauss
E,ε = Tr δ(Ĥ − E) as distributions inE;

(iii) lim ε→0〈Â〉gauss
E,ε = 〈Â〉micro

E′ , whereE′ is the energy eigenvalue nearest toE.
We will now conclude this section by proving these three statements.
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Suppose that the system is Gaussianly bounded with discrete energy levelsEn, each
one having a multiplicityκn and eigenvectors�n,k, k = 1, . . . , κn. Then for any Gaussian
observableÂ, the trace in (2) can be expressed as

Tr(Âρ̂ε(E)) = 1√
2πε2

∑
n,k

exp

[
− 1

2ε2
(En − E)2

]
〈�n,k|Â|�n,k〉. (3)

Denote〈�n,k|Â|�n,k〉 by an,k and note that, since|an,k| 6 〈�n,k||Â||�n,k〉, the above series
converges absolutely for anyε > 0.

Let us first look at the behaviour of the Gaussian partition function, i.e. useÂ = 1̂. By
(3) then

√
2πε2Z

gauss
E,ε =

∑
n

κn exp

[
− 1

2ε2
(En − E)2

]
.

Since for anyW > 0 the function e−W/ε
2

is an increasing function ofε in the regionε > 0,
dominated convergence can be invoked to move the limitε → 0 inside the sum, which then
gives the result

lim
ε→0

√
2πε2Z

gauss
E,ε =

{
κn if E = En for somen

0 otherwise.

Since the right-hand side equalsZmicro
E by definition, this proves the first statement.

Next, letf (E) be any smooth function with a compact support and letM > 0 be such
that|suppf | 6 M. To prove the second statement, we need to show that

lim
ε→0

∫ ∞
−∞

dE f (E)Zgauss
E,ε =

∑
n

κnf (En).

Since ∫ ∞
−∞

dEf (E)
1√

2πε2
exp

[
− 1

2ε2
(En − E)2

]
→ f (En)

whenε → 0, this is clearly true if only it were possible to move first theE-integration and
then theε→ 0 limit inside the sum. In fact, both of these operations are now allowed by the
dominated convergence theorem, since we have the bounds∫ ∞
−∞

dE|f (E)|exp[−(En − E)2/2ε2]√
2πε2

6
{ ‖f ‖∞ if |En| < 2M

‖f ‖∞ exp[− 1
2(|En| −M)2 + 1

2M
2] if |En| > 2M

for all 0< ε 6 1.
Let us finally evaluate the limit of the expectation values for generalÂ,

〈Â〉gauss
E,ε =

∑
n,k

exp[−(En − E)2/2ε2]

Tr ρ̂ε
√

2πε2
〈�n,k|Â|�n,k〉. (4)

For this we will need the result
1∑

n′,k′ exp[−((En′ − E)2 − (En − E)2)/2ε2]

ε→0−→


0 if |En′ − E| < |En − E| for somen′(∑

n′
κn′δ|En′−E|,|En−E|

)−1

otherwise.
(5)
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In other words, this limit is zero ifEn is not the eigenvalue nearest toE, it is (κn + κm)−1

if bothEn andEm are nearest eigenvalues (i.e. ifE lies exactly in the middle of the segment
joiningEn andEm and no other eigenvalues are on this segment) and it isκ−1

n if En is a unique
nearest eigenvalue. Let us use the notationMn(E) for the sum

∑
n′ κn′δ|En′−E|,|En−E|.

Let n0 be the index of any one of the eigenvalues nearest toE. Then for alln

exp[−(En − E)2/2ε2]

Tr ρ̂ε
√

2πε2

= exp[−(En − E)2/2ε2]∑
n′ κn′ exp[−(En′ − E)2/2ε2]

<
1

κn0

exp

[
(En0 − E)2 − (En − E)2

2ε2

]
(6)

where (En0 − E)2 − (En − E)2 6 0. This implies that, for allε in the range
0 < ε 6 1, the absolute value of each of the terms of the series in (4) is less than
exp[(En0 − E)2/2] exp[−(En − E)2/2]|an,k|, which again forms anε-independent sum that
is convergent by assumption. Thus dominated convergence can be applied to move the limit
inside the sum, which then by equation (5) yields the result

〈Â〉gauss
E,ε

ε→0−→ 1

Mn0(E)

∑
n,k

δ|En−E|,|En0−E|〈�n,k|Â|�n,k〉.

SinceMn0(E) is the number of non-zero terms in the above sum, the final expression is nothing
but the average of the expectation values ofÂ over the energy eigenstates nearest toE.

Therefore, wheneverE coincides with a point in the spectrum, the limitε→ 0 will give
the microcanonical expectation value. On the other hand, ifE does not belong to the energy
spectrum (in which case the microcanonical ensemble is in principle ill defined), then the
microcanonical result corresponding to the nearest eigenvalue is obtained. The only values
of E giving non-microcanonical limits are those lying exactly in the middle between two
eigenvalues, but even then the result is an expectation value of a uniform distribution over two
energy eigenvalues.

3. Canonical ensemble as an approximation to the Gaussian ensemble

We will next show how the canonical ensemble can be used for approximating the Gaussian
ensemble in the region where the energy resolutionε is sufficiently large. For this we need
to assume that the system is canonically bounded and thatÂ is a canonical observable. Since
this, in particular, requires the energy spectrum to be bounded from below, we will also assume
that the Hamiltonian has been normalized so that the lowest energy levelE0 is non-negative.

Let us first assume thatβ is a positive parameter. Since

− 1

2ε2
(E − En)2 = − 1

2ε2
(E − En + βε2)2 + βE − βEn +

1

2
β2ε2

we have the identity

Tr(Âρ̂ε(E)) = e
1
2β

2ε2+βE Tr(Âρ̂ε(E + βε2) e−βĤ ). (7)

If we integrate this multiplied by e−βE overE and take the integration inside the trace, which
is possible sincêA is a canonical observable, we get the exact formula

Tr(Â e−βĤ ) = e−
1
2β

2ε2
∫ ∞
−∞

dE e−βE Tr(Âρ̂ε(E)) (8)

valid for all ε > 0 andβ > 0. This is a regularized form of the familiar statement that the
canonical ensemble is the Laplace transform of the microcanonical one.
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The result (8) has a more interesting inverse formula, which we will derive next. We will
begin with the Fourier transform of the normal distribution,∫ ∞

−∞

dα

2π
exp

(
−1

2
ε2α2 + iαW

)
= 1√

2πε2
exp

(
− 1

2ε2
W 2

)
(9)

which can be applied to (7), yielding

Tr(Âρ̂ε(E)) = e
1
2β

2ε2+βE
∫ ∞
−∞

dα

2π
e−

1
2ε

2α2
Tr(Â e−βĤ+iα(E+βε2−Ĥ )).

In changing the order of the integration and the trace we again had to use the assumption that
Â is a canonical observable. Now using a new integration variablew = β + iα we get a
particularly simple form of the desired inversion formula for (8),

Tr(Âρ̂ε(E)) =
∫ β+i∞

β−i∞

dw

2π i
e

1
2ε

2w2+wE Tr(Â e−wĤ ) (10)

valid for all β > 0. We can now conclude that the analytical form of the canonical trace
contains all the information needed to compute the microcanonical expectation values, which
are then easily extracted from the integral in (10). However, this formula also leads to a simple
relation between the usual real-temperature canonical ensemble and the Gaussian ensemble
which we shall inspect next.

For all canonical observables, the trace Tr(Â e−wĤ ) is obviously an analytic function of
w in the half-plane Rew > 0 and all its derivatives are given by a differentiation inside the
trace, i.e.

dk

dwk
Tr(Â e−wĤ ) = Tr(Â(−Ĥ )k e−wĤ ).

Therefore, saddle-point methods can be used in evaluation of the integral in (10),∫ β+i∞

β−i∞

dw

2π i
exp

[
1

2
ε2w2 +wE + ln Tr(Â e−wĤ )

]
.

Here the branch of the logarithm needs to be chosen so that the logarithm is analytic on the
integration contour; if the contour happens to go through a zero of the trace, then an infinitesimal
deformation of the contour is necessary—note that this is always possible if we only make the
trivial assumptionÂ 6= 0. The saddle-point equation, which is of course independent of what
branch we use for the logarithm, is

Tr(ÂĤ e−wĤ )

Tr(Â e−wĤ )
= E + ε2w (11)

while the second derivative, which will determine the direction of the steepest descent path, is

Tr(ÂĤ 2 e−wĤ )

Tr(Â e−wĤ )
−
(

Tr(ÂĤ e−wĤ )

Tr(Â e−wĤ )

)2

+ ε2. (12)

So far we have only assumed that observableÂ is canonical. For the following discussion
we shall also assume thatÂ is positive, non-zero and that Tr(ÂĤ ) = ∞, keeping in mind
that the special casêA = 1̂ falls into this category. We shall also use the notationO
for Tr(ÂÔ e−wĤ )/Tr(Â e−wĤ ). With these definitions, the saddle-point equation becomes

H = E + ε2w and the second derivative is(H −H)2 + ε2.
If we restrict ourselves to the positive real axis, then Tr(Â e−wĤ ) will always be strictly

positive and bothH and(H −H)2 will be well defined and positive. From this we conclude
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that on the positive real axis the logarithm ln Tr(Â e−wĤ ) is a convex function and that the
expectation valueH is strictly decreasing. Therefore, the saddle-point equation (11) has at
most one positive solution for eachE. On the other hand, the assumption Tr(ÂĤ ) = ∞ can
be used to show that a solution exists for everyE ∈ R andε > 0. We shall now assume that
β, which was an arbitrary parameter of the integration contour in (10), has been chosen to

equal this unique positive solution. Since the second derivative is(H −H)2 + ε2, it is now
strictly positive and the integration contourβ − i∞→ β + i∞ in fact goes through the saddle
pointβ via the path of steepest descent. Using the saddle-point approximation to evaluate the
contribution of this saddle point to the integral then gives

1√
2π
(ε2 + (H −H)2)− 1

2 e
1
2β

2ε2+βE Tr(Â e−βĤ ).

From this, equation (7) and the saddle-point equation we obtain the following exact result and
its saddle-point approximation

Tr(Âρ̂ε(E)) = e−
1
2β

2ε2+βH Tr(Âρ̂ε(H) e−βĤ ) (13)

≈ 1√
2π
(ε2 + (H −H)2)− 1

2 e−
1
2β

2ε2+βH Tr(Â e−βĤ ). (14)

So far we have only inspected the saddle points on the positive real axis. However, as
a simple example with, for example, a harmonic oscillator will show, there will generally be
a countably infinite set of saddle points on the complex plane. Also, it is quite possible that
the steepest descent path going through all the relevant saddle points will not stay on the right
half-plane, which will be unfortunate unless the analytical continuation of the canonical trace
over the imaginary axis is known. In addition, the values ofβ at which the traces Tr(Âρ̂ε(E))
and Trρ̂ε(E) need to be evaluated are typically different, which would then mean that the ratio
of their saddle-point approximations does not exactly equal the canonical expectation value.

However, as we shall see in the next section, in the thermodynamical limit these
considerations are not relevant and the saddle-point approximation using the positiveβ will
give accurate results so long as we use a suitableε and inspect only large enough energiesE.
For the partition function this saddle-point approximation reads

Z
gauss
E,ε ≈

1√
2π(σ 2 + ε2)

e−
1
2β

2ε2+βHZcan
β (15)

whereH = 〈Ĥ 〉can
β , σ 2 = 〈Ĥ 2〉can

β − H
2

andβ is the unique positive number satisfying

〈Ĥ 〉can
β = E + ε2β. Using this sameβ also for the other trace in the expectation values will

give the following exact result and an approximation of the Gaussian expectation values:

〈Â〉gauss
E,ε =

Tr(Âρ̂ε(H) e−βĤ )

Tr(ρ̂ε(H) e−βĤ )
≈ 〈Â〉can

β . (16)

From this formula we can already gain some idea of when the approximation will be most
accurate: the contribution of the additional termρ̂ε(H) will be small when the variance of the
Gaussian peak is greater than the variance of the canonical distribution, i.e. wheneverε2 > σ 2.
We will derive more quantitative bounds for the accuracy of the approximation in the next
section.

From the above result we can give a new interpretation of the role of the canonical
ensemble in quantum statistics:the canonical ensemble is an approximation of the regularized
microcanonical ensemble from which the discrete structure of the energy levels has been
smoothed out.We have also seen that the canonical approximation works best in the limit
ε/σ →∞. However, for a fixed energyE a minimum requirement for theGaussianensemble
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to give meaningful results isε < E−E0, so that taking this limit to its extreme is not possible
in practice. In the next section we will propose a procedure for inspecting how and when a
suitable compromise forε can be found.

Finally, we would like to comment on the interpretation of the canonical entropy,
Scan
β = β〈Ĥ 〉can

β +lnZcan
β , in view of the previous approximation. Since the value ofZ

gauss
E,ε gives

the density of the energy eigenstates at energyE—the density as the number of eigenstates
per the energy intervalε—its logarithm can be interpreted as the entropy of the system and
we denoteSgauss

E,ε = lnZgauss
E,ε . On the other hand, from the saddle-point approximation (15) we

conclude that

S
gauss
E,ε ≈ Scan

β − ln ε − 1

2
ln

[
2π

(
1 +

σ 2

ε2

)]
− 1

2
ε2β2 (17)

which means that the canonical entropy gives a good approximation of the logarithmic density
of states per energyε providedthe energy resolution is proportional to the canonical energy
deviation, i.e.ε ∝ σ . If the energy resolution is microscopic, then the above formula implies
a correction to the canonical entropy of the form lnN ,N being the number of particles. Thus
a natural interpretation for the canonical entropy is the entropy measured from the density of
states per energyσ , the standard deviation of the canonical ensemble—note that the relation
between the density of states and the dimensionless number given by the canonical entropy is
dubious in any case.

4. Efficiency and improvements of the canonical ensemble

In this section we will continue working with the same set-up as in the previous one,
i.e. we assume that the system is canonically bounded,Â is a canonical observable and the
parameterβ is the unique positive solution to the equation〈Ĥ 〉can

β = E + ε2β. Since we will
be mainly using the canonical expectation values here, we will drop both the superscript ‘can’
and the subscriptβ from these expressions; similarly, using the ‘hats’ to signify operators will
become cumbersome and we will abandon the practice at this point.

Our first aim is to derive quantitative bounds for how well the canonical ensemble
approximates the Gaussian one and then to derive a method for computing corrections to
the canonical ensemble when it first begins to fail. The corrections will be expressed in terms
of the normalized moments of the canonical distribution and for this reason we will now adopt
the notationσ 2 for the variance〈(H − 〈H 〉)2〉 and then define the normalized Hamiltonianh
by the formula

h = H − 〈H 〉
σ

.

If A is positive and non-zero, then Jensen’s inequality [9] can be used for deriving the
following bounds valid for anya ∈ R,

exp

(
−a 〈Ah

2〉
〈A〉

)
6 〈A exp(−ah2)〉

〈A〉 6 1. (18)

If we apply this to〈A e−ah
2
exp(ah2)〉/〈A e−ah

2〉, we can also improve the upper bound:

exp

(
−a 〈Ah

2〉
〈A〉

)
6 〈A exp(−ah2)〉

〈A〉 6 exp

[
−a 〈Ah

2〉
〈A〉 exp

(
−a 〈Ah

4〉
〈Ah2〉

)]
. (19)

Since〈h2〉 = 1 by definition, we get forA = 1̂

exp(−a) 6 〈exp(−ah2)〉 6 exp[−a exp(−a〈h4〉)]. (20)
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Applying these bounds witha = σ 2/2ε2 to (16) yields the following bounds for the
relative efficiency of the canonical expectation values

exp

(
− σ

2

2ε2

〈Ah2〉
〈A〉

)
6
〈A〉gauss

E,ε

〈A〉 6 exp

(
σ 2

2ε2

)
(21)

or by using the more accurate equation (19),

− σ
2

2ε2

[ 〈Ah2〉
〈A〉 − exp

(
− σ

2

2ε2
〈h4〉

)]
6 ln
〈A〉gauss

E,ε

〈A〉 6 σ 2

2ε2

[
1− 〈Ah

2〉
〈A〉 exp

(
− σ

2

2ε2

〈Ah4〉
〈Ah2〉

)]
.

(22)

These equations prove, for positive observablesA, the earlier alluded statement that in the limit
ε/σ →∞ the approximation by the canonical ensemble becomes exact. On the other hand,
the bounds also suggest that it is necessary to have at leastε2/σ 2 . 1

2 before the canonical
expectation values give a trustworthy approximation of the Gaussian ones.

For a fixedE it is not in general possible to take the limitε→∞, since thenβ → 0 and
thus alsoσ →∞. Moreover, it is also necessary to require thatε � E to obtain a meaningful
approximation to the microcanonical ensemble from the Gaussian one. In practice, the most
interesting applications of the ongoing ideas are in the energy region in which the canonical
ensemble first begins to fail. For this reason, we also need an estimatein terms of the canonical
quantitiesfor the region where the canonical approximation is not reliable.

Since

E = 〈H 〉 − βε2 = 〈H 〉
(

1− βσ
2

〈H 〉
ε2

σ 2

)
(23)

should be positive, we can now give the following rules for making an identification between
the canonical and the Gaussian ensemble.
• The value ofβσ 2/〈H 〉 measures the effectiveness of the canonical ensemble with a

givenβ: the smaller the value, the better the canonical ensemble works and differences are
expected to arise when it gets to be of the order of one. Note that in the thermodynamical limit,
we haveβ ∝ 1/N , 〈H 〉 ∝ N andσ 2 ∝ N and therefore we would expect this quantity to
vanish as 1/N , thus implying that the Gaussian and the canonical ensemble become equivalent
in the thermodynamical limit.
• For those values ofβ with βσ 2/〈H 〉 . 1, choosing anε ∝ σ will give the most reliable

results. The proportionality factor need not be very large, since the relative accuracy of the
canonical approximation depends on the second power of its inverse—for typical observables
the accuracy can improve even more quickly as can be seen from equation (22). In any case,
we get from (23) an absolute upper bound for the possible values of the proportionality factor,

ε

σ
6
√
〈H 〉
βσ 2
∝
√
N.

Let us then derive an approximation for the Gaussian partition function in the region where
the parametera = σ 2/2ε2 is small. From (13) we get the following identity

Z
gauss
E,ε =

1√
2π(σ 2 + ε2)

e−
1
2β

2ε2+β〈H 〉Zcan
β

√
1 + 2a〈e−ah2〉

where we have extracted the saddle-point approximation that was given in (15). Let us denote
the logarithm of the correction to the saddle-point approximation byf (a) = 1

2 ln(1 + 2a) +

ln〈e−ah2〉. Equation (20) immediately yields simple bounds for this correction term,
1
2 ln(1 + 2a)− a 6 f (a) 6 1

2 ln(1 + 2a)− a e−a〈h
4〉.
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Clearly,f is an analytic function on the right half-plane and it is infinitely many times
differentiable from the right at the origin of the real axis. Thus it has a Taylor polynomial
expansion at the origin,

f (a) =
K−1∑
k=0

ak

k!
f (k)(0+) +O(aK) for all a > 0 (24)

although the corresponding full Taylor seriesneed notconverge. This situation is the same as
is often encountered in perturbation theory: the result is an asymptotic series in the perturbed
coupling constant.

Sincef (0+) = 0, the constant term of the expansion vanishes and, by virtue of the
saddle-point approximation, the first coefficient is also zero, since〈h2〉 = 1. The rest of the
coefficients of the expansion (24) are then given by the formula

f (k)(0+) = (−2)k−1(k − 1)! +
dk

dak
ln〈e−ah2〉|a=0 for k > 1

the first five of which are computed in table 1.

Table 1. The first five derivatives needed in the Taylor expansion of the Gaussian partition function.
In the table,hn refers to the canonical expectation value〈hn〉.
k f (k)(0+)

1 0
2 −3 +h4

3 6 + 3h4 − h6

4 −54 + 12h4 − 3h2
4 − 4h6 + h8

5 360 + 60h4 − 30h2
4 − 20h6 + 10h4h6 + 5h8 − h10

With a givenK, the residual termRK(a)—denoted byO(aK) in (24)—can be written as

RK(a) = aK

K!
f (K)(α)

whereα ∈ [0, a] depends ona. Since all derivatives are continuous, the values of the derivatives
at 0+ given in table 1 give an estimate forf (K)(α) for sufficiently smalla. Therefore, these
values can be used for estimating the residual term and thus for deciding the best value ofK

for a given, small,a.
If a is not small enough, it is possible to use other, less accurate, estimates. Nowf (K)(α)

is a polynomial of the ratiosgn = 〈hn exp(−αh2)〉/〈exp(−αh2)〉, which, on the other hand,
have the exact bounds

exp

(
− a h2k+2

h2k

)
6 g2k

h2k
6 exp(a) for all k > 1.

Therefore, it is possible to use these bounds in the known form of the polynomials yielding
exact bounds for the values of the derivatives. The first five of the polynomials are given in
table 2 and the rest can be easily computed, if necessary.

The same Taylor polynomial approximation ina can be made equally well for expectation
values of a canonical observableA. Let us define

g(a) = 〈A exp(−ah2)〉
〈exp(−ah2)〉

when by (16) the functiong(a) equals the Gaussian expectation value ofA at energy
E = 〈H 〉 − ε2β and resolutionε = σ/√2a. The Taylor expansion ofg is

g(a) = 〈A〉
(

1 +
K−1∑
k=1

ak

k!
Gk(0) +

〈A exp(−αh2)〉
〈A〉〈exp(−αh2)〉

aK

K!
GK(α)

)
(25)
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Table 2. The first five general derivatives needed for the Taylor residuals of the Gaussian partition
function. In the table,gn refers to theα-dependent ratio〈hn exp(−αh2)〉/〈exp(−αh2)〉.
k f (k)(α)

1
1

1 + 2α
− g2

2 − 2

(1 + 2α)2
− g2

2 + g4

3
8

(1 + 2α)3
− 2g3

2 + 3g2g4 − g6

4 − 48

(1 + 2α)4
− 6g4

2 + 12g2
2g4 − 3g2

4 − 4g2g6 + g8

5
384

(1 + 2α)5
− 24g5

2 + 60g3
2g4 − 30g2g

2
4 − 20g2

2g6 + 10g4g6 + 5g2g8 − g10

Table 3. The first few normalized derivatives—as defined in equation (26)—needed in the Taylor
expansion of the Gaussian expectation values. Heregn andAn refer to theα-dependent ratios
〈hn exp(−αh2)〉/〈exp(−αh2)〉 and〈hnA exp(−αh2)〉/〈A exp(−αh2)〉, respectively.

k Gk(α)

1 −A2 + g2

2 A4 − 2A2g2 + 2g2
2 − g4

3 −A6 + 3A4g2 − 6A2g
2
2 + 6g3

2 + 3A2g4 − 6g2g4 + g6

4 A8 − 4A6g2 + 12A4g
2
2 − 24A2g

3
2 + 24g4

2 − 6A4g4 + 24A2g2g4 − 36g2
2g4 + 6g2

4 − 4A2g6 + 8g2g6 − g8

5 −A10 + 5A8g2 − 20A6g
2
2 + 60A4g

3
2 − 120A2g

4
2 + 120g5

2 + 10A6g4 − 60A4g2g4 + 180A2g
2
2g4 − 240g3

2g4

−30A2g
2
4 + 90g2g

2
4 + 10A4g6 − 40A2g2g6 + 60g2

2g6 − 20g4g6 + 5A2g8 − 10g2g8 + g10

where the coefficientsGk are normalized derivatives,

Gk(α) = 〈exp(−αh2)〉
〈A exp(−αh2)〉g

(k)(α) (26)

and we have given the first few of them in table 3. The expansion up to terms of ordera2 is,
therefore, given by

g(a) = 〈A〉 + 〈(1− h2)A〉a + [〈(1− h2)A〉 + 1
2〈(h4 − 〈h4〉)A〉]a2 +O(a3).

5. Summary of the results

In the first section we have shown that whenε → 0 the Gaussian ensemble approaches
the quantum microcanonical ensemble and the Gaussian expectation values pick out the
nearest microcanonical expectation values. This makes the Gaussian ensemble an easy to
use approximation of the microcanonical ensemble, although we have also argued that the
ensemble can be given an independent physical interpretation in certain kinds of experiments.

The main results of this paper, however, consider the opposite limit, whereε is much larger
than a typical distance between consecutive energy levels. We have shown how the canonical
ensemble forms an accurate approximation of the Gaussian ensemble in this limit. On the other
hand, since the Gaussian ensemble is a regularization of the discrete microcanonical ensemble
in this limit, the canonical ensemble can also be given an interpretation as an approximation
of this regularized microcanonical ensemble.

If E andε are the Gaussian energy and energy resolution, respectively, then there always
exists a uniqueβ > 0 defined by the equation〈H 〉can

β = E+βε2 and thisβ gives the best inverse



298 J Lukkarinen

temperature for a canonical approximation of the Gaussian ensemble. This approximation is
best characterized by the parametera = σ 2/2ε2, whereσ 2 is the variance of the energy in
the canonical ensemble,σ 2 = 〈H 2〉can

β − (〈H 〉can
β )2. The approximation was shown to work

at least in the region wherea � 1 and, since it was necessary to havea & βσ 2/〈H 〉can
β , the

latter quantity furnishes an indicator of whether or not the canonical ensemble can be used for
getting reliable information about the properties of a closed system. This indicator can also
be given in the formβσ 2/〈H 〉can

β = CV /β〈H 〉can
β , whereCV is the specific heat at constant

volume.
Quantitatively, we have proven the following formulae for the canonical approximation

of the Gaussian ensemble

S
gauss
E,ε = Scan

β − ln ε − 1
2 ln(2π)− σ

2β2

4a
− 1

2 ln(1 + 2a) +1S(a;β) (27)

〈A〉gauss
E,ε = 〈A〉can

β +1A(a;β). (28)

The correction terms, which become important in the regiona ≈ 1, can be given an
asymptotic expansion in terms of the moments of the normalized canonical energy operator,
h = (H − 〈H 〉)/σ ,

1S(a;β) = 1
2(〈h4〉 − 3)a2 + 1

6(6 + 3〈h4〉 − 〈h6〉)a3 +O(a4) (29)

1A(a;β) = 〈(1− h2)A〉a + [〈(1− h2)A〉 + 1
2〈(h4 − 〈h4〉)A〉]a2 +O(a3). (30)

The entropy deviation has also the exact bounds
1
2 ln(1 + 2a)− a 6 1S(a;β) 6 1

2 ln(1 + 2a)− a exp(−a〈h4〉) (31)

while for positiveobservablesA we have derived bounds for the logarithmic proportional
deviation

−a
[ 〈Ah2〉
〈A〉 − exp(−a〈h4〉)

]
6 ln
〈A〉gauss

E,ε

〈A〉can
β

6 a
[
1− 〈Ah

2〉
〈A〉 exp

(
−a 〈Ah

4〉
〈Ah2〉

)]
. (32)

All expectation values in the above are in the canonical ensemble unless stated otherwise.

6. Thermodynamics of systems with exponentially increasing density of states

We will now repeat the analysis done in sections 3 and 4 on a system with exponentially
increasing density of states. In this case, the canonical ensemble can be defined only up to a
certain value of the inverse temperatureβ and it is not clear when and if the canonical ensemble
will give meaningful results. However, since there are physically interesting systems which
exhibit an exponential increase of the density of states, for example, free bosonic string theory
[10], and since computations in the canonical ensemble are typically easier to perform than
microcanonical ones, it is useful to know if the canonical ensemble can be applied to analysis
of such a system.

We first define what is meant by an exponential increase of the density of states: if there
exists a finite number

βc = inf {β > 0 | tr e−βH <∞}
thenβc can be identified with the speed of exponential increase of the density of states as
clearly tr e−βH <∞ for all β > βc and tr e−βH = ∞ for β < βc. Also, in the following we
will consider only observablesA with the property tr|A| e−βH <∞ for all β > βc. Since we
have assumed thatβc <∞, the system is Gaussianly bounded andA is a Gaussian observable.
Note also thatβc = 0 corresponds precisely to the canonical case.
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Under these assumptions, everything stated in the beginning of section 3, especially
formulae (7)–(10), still hold if we only requireβ > βc instead ofβ > 0. Similarly, the
analyticity of the integrand in (10) is guaranteed only in the half-plane Rew > βc. In the saddle-
point approximation of this integral, the uniqueness of the positive saddle point still holds with
the same proof as before, but theexistencedepends crucially on the behaviour of the canonical
ensemble at temperature 1/βc or, more specifically, on the value ofEc ≡ limβ→β+

c
〈H 〉can

β .
If Ec = ∞, then there exists for allE ∈ R and ε > 0 a uniqueβ > βc for which

〈Ĥ 〉can
β = E + βε2. If Ec < ∞, then there is a positive saddle pointβ if and only if

E < Ec−βcε
2. In these two cases everything stated in section 4 will hold for the saddle-point

value ofβ and thus it is reasonable to use the canonical ensemble for those systems with
CV /〈βH 〉can

β � 1.
The situation is different for those values ofE for whichE > Emax ≡ Ec − βcε

2. Then
there are no saddle points on the positive real axis and the best one can do with the canonical
ensemble is to chooseβ → βc. This approximation, however, is not good unlessE ≈ Emax

as can be seen from the relation

〈A〉gauss
E,ε =

Tr(Aρε(E + βcε
2) e−βcH )

Tr(ρε(E + βcε2) e−βcH )
= 〈Aρε(Ec +E − Emax)〉can

βc

〈ρε(Ec +E − Emax)〉can
βc

which is a consequence of equation (7).
Thus we have found that if〈H 〉can

βc
= ∞ the system can always be approximated by the

canonical ensemble in the thermodynamical limit just as has been explained in the preceding
sections. In effect, as the system is ‘heated up’ by adding more and more energy to it, the
temperature of the system will increase asymptotically to the limiting valueTc = 1/βc. On the
other hand, if〈H 〉can

βc
<∞, then there exists a limiting energyEmax≈ 〈H 〉can

βc
after which the

canonical ensemble should not be used for estimating the statistical behaviour of the system
but using some form of the microcanonical ensemble instead would be advisable.

7. Discussion

In this paper we have examined relations between the microcanonical and the canonical
approach to quantum statistics. On the level of ideas, the present results are well known
and well presented in most standard textbooks on statistical physics and, naturally, none of
our results tells us anything new about systems fully in the thermodynamical limit. What we
have aspired to do here is to develop a systematic treatment of systems, which are neither large
enough to be considered thermodynamical nor simple enough to be completely solvable, but
which are, nevertheless, in an energetic equilibrium with their environment.

By taking the energy fluctuations of the system as an integral part of the microcanonical
formalism we have been able to show rigorously how the canonical ensemble gives an
approximation of the microcanonical statistics even for systems which are not even near a
thermodynamical limit and we have been able to give precise relations between canonical
concepts, such as temperature, and the more fundamental concepts related directly to energy.
We have also shown how and when the canonical ensemble can be stretched to aid in the
analysis of these non-thermal systems.

In our analysis of regularization of the energy spectrum we have limited ourselves to
the Gaussian distribution. This, however, is only a convenient choice and the analysis
could be repeated by using any smooth function with a compact support instead. Using
this second alternative would, in fact, be necessary for microcanonically bounded systems
with the logarithm of the density of states increasing faster than quadratically in energy, but
we will not redo this analysis here. Neither have we yet discussed the evaluation of the
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canonical moments of the energy operator, which are required for the asymptotic expansion of
the Gaussian expectation values—this will be the subject of a subsequent work, where we will
also show how lattice Monte Carlo methods can be employed in evaluation of the Gaussian
expectation values.

For sake of mathematical definiteness, we have in this paper inspected only quantum
mechanical systems, but on the level of formal manipulation, the results given here can be
equally well interpreted as statements about statistical quantumfield theory. Since canonical
quantum field theory is already a well developed part of the physicists’ toolkit [11], this is not
as bold a claim as it looks at first sight. In fact, the formulation of the quantum microcanonical
ensemble given in [3] can also be obtained from theε, β → 0+ limit of the Gaussian formula
(10), which might then lead to a more rigorous derivation of that formulation after the intricacies
in the definition of four-dimensional statistical quantum field theories have been resolved.
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